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ABSTRACT

TheMadden–Julian oscillation (MJO) is one of themost important sources of predictability on subseasonal

to seasonal (S2S) time scales.Many previous studies have explored the impact of the present state of theMJO

on the future evolution and predictability of extratropical weather patterns. What is still unclear, however, is

the importance of the accumulated influence of past MJO activity on these results. In this study, the im-

portance of past MJO activity in determining the future state of extratropical circulations is examined by

using a linear baroclinic model (LBM) and one of the simplest machine learning algorithms: logistic re-

gression. By increasing the complexity of the logistic regression model with additional information about the

past activity of theMJO, it is demonstrated that the past 15 days play a dominant role in determining the state

of MJO teleconnections more than 15 days into the future. This conclusion is supported by numerical LBM

simulations. It is further shown that the past 15 days of additional information are only important for some

MJO phases/lead times and not others, and the physical basis for this result is explored.

1. Introduction and motivation

The Madden–Julian oscillation (MJO) is one of the

dominant forms of precipitation and circulation vari-

ability in the tropics, and propagates eastward along the

equator with a life cycle of 20–100 days (Adames and

Kim 2016; Madden and Julian 1971). The MJO’s influ-

ence is felt across the world. In the tropics, the MJO can

influence the initiation of El Niño–Southern Oscillation

(ENSO) events through the occurrence of westerly

wind bursts (Moore and Kleeman 1999), modulate

tropical cyclone genesis (Ching et al. 2010; Maloney and

Hartmann 2000), and influence precipitation associated

with the Asian and Australian monsoon (Lawrence and

Webster 2002; Wheeler et al. 2009). In the extratropics,

the MJO has been shown to modulate atmospheric

river activity along the west coast of the United States

(Mundhenk et al. 2016), the frequency of tornadoes and

hailstorms in the U.S. Great Plains (Baggett et al. 2018),

extreme cold air outbreaks across North America (Lin

2018), and precipitation over NewZealand (Fauchereau

et al. 2016) and Brazil (De Souza and Ambrizzi 2006)

via its tropical–extratropical teleconnections. Due to

the MJO’s ability to impact global circulations, and its

intraseasonal time scales, the MJO has been regarded as

one of the most important sources of predictability on

subseasonal to seasonal (S2S) time scales (2–5 weeks;

Hamill and Kiladis 2014).

In the past decade, multiple studies have leveraged

the MJO for S2S prediction by developing empirical

models based on the geographical location and the

amplitude of MJO forcing (i.e., MJO indices; Cassou

2008; Baggett et al. 2018;Mundhenk et al. 2018).Most of

these empirical models are based on MJO information

at the time of the forecast (i.e., the MJO at lag 0).

However, the MJO’s influence on the atmosphere takes

time to develop, especially in the extratropical regions

far from the heat source (Mori and Watanabe 2008). By

analyzing observational data and employing numerical

experiments, Mori and Watanabe (2008) and Tseng

et al. (2019) demonstrated the extratropical Pacific–

North America (PNA) pattern generated by MJO

heating takes around 10–15 days to develop, indicating

that prediction of the teleconnection patterns at early

forecast lead times may rely onMJO information before

lag 0. We define the lag (lead) as the number of days

before (after) the present state; for example, lag 21

indicates 1 day before the current state (day 0). In ad-

dition, the teleconnections generated by past MJO

forcing can interfere with the teleconnections generatedCorresponding author: Kai-Chih Tseng, kctseng@rams.colostate.edu
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by later MJO forcing due to the memory of atmosphere.

For example, previous studies have shown that partic-

ular MJO phases (i.e., phases 2, 3, 6, and 7) favor a more

robust PNA-like pattern while the teleconnection pat-

terns generated by the other phases are less consistent

from one event to the next (Tseng et al. 2019). Thus,

the superimpositions of different teleconnection signals

from MJO forcing at different time lags likely jointly

help determine the extratropical circulation. These two

factors imply that developing empirical models based

solely on the present state of theMJO (i.e., MJO at lag 0)

may be improved by incorporating information about

the past MJO states as well. The importance of the ac-

cumulated impacts of past MJO activity is also relevant

for diagnostic studies. For example, Cassou (2008) de-

monstrated that the MJO can significantly influence the

North Atlantic oscillation (NAO) with a lead time of

0–14 days. However, MJO teleconnections take time to

develop over the Atlantic far from the heat source, and

thus modulation of the NAO at 0–14 days lead is likely

also impacted by the past state, in addition to the present

state, of the MJO. Although the concept of an empirical

prediction may not be directly relevant to those from

dynamical models (where information is included in the

three-dimensional atmospheric fields), the insights ob-

tained from these simple empirical models can help us

better understand initial condition-dependent forecast

skill (e.g., conditional forecasts).

In this study, we aim to quantify the influence of past

MJO activity on the future state of the extratropical

circulation. To do this, we focus on three subquestions:

1) Can an empirical logistic regression model be im-

proved by including information about the MJO before

lag 0? 2) At what point in the past does the additional

information about the MJO no longer benefit the em-

pirical model? 3) What physical mechanisms explain

why additional lags are necessary? By training one of the

simplest machine learning algorithms, a logistic regres-

sion model, we will demonstrate that MJO activity be-

fore lag 0 plays a critical role in determining future

midlatitude geopotential height anomalies. The logistic

regression model allows for minor nonlinearity, but re-

sults for linear regression are shown in appendix B as an

additional reference. In addition, we employ numerical

experiments in a linear baroclinic model (LBM) and use

the dynamics ofMJO teleconnection to support what we

found in the logistic regression model.

The manuscript is organized as follows. Section 2

provides detailed descriptions of the data, methods, and

logistic regression model. In section 3, the results of

predicting daily geopotential height anomalies with the

logistic regression models are demonstrated using an

MJO index as a predictor. We also demonstrate that

different phases require different amounts of MJO in-

formation before lag 0 for improving model prediction

skills. In section 4, results of the logistic regression

model are compared to those from the LBM simulations.

In section 5, a physical explanation for the MJO phase

dependence of results shown in the end of section 3 is

provided. Section 6 is a discussion and conclusions.

2. Data and method

a. Data

Thirty-six years (1979–2015) of daily 500-hPa geo-

potential height (Z500) data are acquired from the

European Centre for Medium-Range Forecasts (ECMWF)

interim reanalysis (ERA-Interim;Dee et al. 2011). Since

MJO teleconnections are largely characterized by a

barotropic structure, the choice of 500 hPa does not

qualitatively change the results shown in this study. To

derive the anomalous daily Z500, the first three har-

monics of the daily climatology and the linear trend are

removed. Thus, except for the seasonal cycle, the Z500

anomalies contain the variability spanning daily to in-

terannual time scales. The Z500 field is additionally in-

terpolated onto a 2.58 3 2.58 grid for ease of comparison

with the linear baroclinic model results.

The outgoing longwave radiation (OLR) MJO index

(OMI) acquired from https://www.esrl.noaa.gov/psd/

mjo/mjoindex is used as a proxy for MJO convection.

The OMI1 and OMI2 indices correspond to the two

leading principal components of the equatorial-averaged

OLR derived from empirical orthogonal function analy-

sis. To define the MJO phase, the MJO phase angle is

defined as tan21[2(OMI1/OMI2)]. This angle is then

used to approximate the location of MJO convection. A

detailed description of the MJO index can be found in

Kiladis et al. (2014). Since MJO-induced midlatitude

Z500 anomalies are stronger during the boreal winter

than the boreal summer, we focus this study on winter

days from November toMarch. AnMJO event is defined

as when the OMI amplitude is greater than one standard

deviation (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OMI12 1OMI22

p
.s).

b. Logistic regression model

We aim to quantify the time scales of influence of past

MJO activity on the future state of the extratropical

circulation. To do this, we begin by investigating whether

an empirical logistic regression model can be improved

by including information about theMJObefore lag 0. By

adding additional prior (before lag 0) MJO information

to the input variables, we can examine if the MJO

teleconnection prediction skill is improved and quantify

the time lags at which these additional predictors no
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longer provide benefit. The logistic regressionmodel—one

of the most basic forms of an artificial neural networks—

has been widely used for classification problems (i.e.,

‘‘yes/no’’ predictions; Wilks 2011; Slade and Maloney

2013). The formulation is nearly identical to a linear re-

gression model, except that a nonlinear activation func-

tion is applied to the output of the linear regression. The

purpose of this activation function is to add nonlinearity

to the otherwise linear model.

In this study, we convert the daily Z500 anomaly into a

logistic value by mapping each anomaly to its sign. That

is, sign(Z500) 5 1 when Z500 $ 0 and sign(Z500) 5 0

when Z500, 0. Equations (1) and (2) define the logistic

regression model which uses OMI1 andOMI2 at lag 0 as

predictors to predict the sign(Z500) t days into the future.

h
i,t
5w

OMI10,t
3OMI1

i,0
1w

OMI20,t
3OMI2

i,0
1b

t
, (1)

sign(Z500)predicti,t 5
1

11 e2hi,t
: (2)

Equation (1) is the linear part of the logistic model.

OMI1i,0 and OMI2i,0 refer to the OMI indices of the ith

MJO event at lag 0, wOMI10,t and wOMI20,t are the corre-

sponding coefficients, bt is the ‘‘bias unit,’’ which is a

constant, and hi,t is the predicted geopotential height

anomaly by the linear regression model, which has units

of meters. In this study, the forecast lead time t spans

from 0 to 30 days. Equation (2) is the sigmoid activation

function that converts the output of Eq. (1) (i.e., hi,t)

into logistic values. Thus, plugging hi,t into this activa-

tion function provides a final prediction of the sign of the

Z500 anomaly, sign(Z500)predicti,t . According to the defi-

nition of Eq. (2), sign(Z500)predicti,t is always greater than 0

and smaller than 1. Thus, a decision boundary of 0.5 is

used. Specifically, sign(Z500)predicti,t is considered as 1

when it is greater than/equal to 0.5 and 0 when the value

is less than 0.5. For each grid point and forecast lead

time, we develop a unique logistic model. In this way,

the models over different grid points do not rely on one

another. In this study, we use a gradient descent opti-

mizer to determine the optimal values of the coefficients

(e.g., wOMI10,t, wOMI20,t, and bt). Detailed information is

given in appendix A.

c. Linear baroclinic model

To augment the results from the logistic regression

model, we additionally conduct numerical experiments

with a linear baroclinic model (Watanabe and Kimoto

2000). Specifically, we compare five simulations, with

each of the five simulations forced with the composite

heating anomaly from the sameMJOevents but initialized

at different time lags (i.e., lag 5 0, 25, 210, 215, 220).

This experimental setup allows us to examine how past

values ofMJO forcing (before lag 0) impact the generation

of particular extratropical teleconnection patterns. These

results are then compared to the results based on the lo-

gistic regression model. Additional details are provided in

section 4.

1) MODEL DESCRIPTION

In the LBM, the primitive equations are linearized

about a given basic state and the anomalous response of

the circulation is calculated based on the prescribed

forcing. The model formulation can be found in the

appendix ofWatanabe and Kimoto (2000) and the LBM

users’ guide at https://ccsr.aori.u-tokyo.ac.jp/;lbm/lbm/

doc2.2.pdf. Instead of looking for a steady-state extra-

tropical response to the MJO forcing, we utilize the

time-integration model configuration where the forcing

and response are time-dependent. This configuration

is further used to develop the storm track model in

Watanabe and Kimoto (2000). Both ‘‘time-integration’’

and ‘‘storm track’’ models share the same formulation

but different parameter settings, including forcing and

numerical damping. Different from the random white

noise forcing used in the storm track model, an eastward

propagating MJO heating is used as an forcing to per-

turb the model in this study (see section 4). Similar to

Tseng et al. (2019), the model is run at T42 horizontal

resolution (;2.88 3 2.88) with 20 sigma levels and uti-

lizes linear damping (including Rayleigh friction and

Newtonian damping). The e-folding time scale for the

numerical damping is 20 days for all vertical layers

except the top 1 and bottom 3 layers, which have an

e-folding time scale of 0.5 days. We also employ fourth-

order biharmonic damping (i.e. =4) with an e-folding

time scale of 2 h for the shortest wavelength. The strong

damping in the lower troposphere and scale-dependent

damping avoid issues with baroclinic instability and

stabilize the integration. Henderson et al. (2017) and

Tseng et al. (2019) demonstrated that the LBM can

simulate MJO teleconnection patterns comparable to

the observational reanalysis with this parameter setup

[e.g., Fig. 8 inHenderson et al. (2017) and Figs. 4 and 5 in

Tseng et al. (2019)]. All of these parameters are fixed

throughout this study, ensuring that any differences be-

tween simulations is caused by differences in the pre-

scribed forcing.

2) MODEL BASIC STATES AND FORCING

The LBM requires two inputs: 1) the basic state, which

is associated with the linear operators in the model, and

2) the anomalous forcing, which is used to drive the

anomalous circulation in the model. For the basic state,

three variables acquired from ERA-Interim are used:
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surface pressure, horizontal momentum (both zonal and

meridional), and temperature. These variables are av-

eraged over the boreal winter (November–March) from

1979–2015 and remain fixed throughout this study.

For the anomalous heating, the daily apparent heat

source is calculated based on Yanai et al. (1973). The

apparent heat source is defined by the budget residual of

the thermodynamic energy equation:

Q
1
[

Ds

Dt
ffi Q

R
1Q

c
2

›s0v0

›p
: (3)

In Eq. (3), s is the dry static energy, which is defined as

cpT 1 gz where cp is the specific heat, T is the temper-

ature, g is the gravitational acceleration, and z is the

geopotential height. Also,QR andQc are the energy flux

convergence of radiation (both longwave and short-

wave) and latent heat. 2(›s0v0/›p) is the flux conver-

gence of dry static energy by subgrid-scale processes (e.g.,

cumulus convection and boundary layer turbulence). In

this study, Q1 anomalies are derived by removing the

linear warming trend and the daily climatology of the

first three harmonics of annual cycle. A Lanczos band-

pass filter (20–100 days) is then applied to the anomalous

data to get the intraseasonal Q1 anomaly.

3. Prediction of midlatitude Z500 with logistic
regression

In this section, we ask whether an empirical logistic re-

gression model for predicting midlatitude Z500 anomalies

can be improved by including information about the MJO

before lag 0. We then quantify the particular time lag in

the past beyond which additional information about the

MJO no longer benefits the model. To test how the MJO

teleconnection prediction skill changes with increased past

MJO index information in the logistic regression model,

we rewrite Eq. (1) into a more general form:

h
i,t
5�

k

[w
OMI1k,t

3OMI1
i,k
1w

OMI2k ,t
3OMI2

i,k
]1b,

k 2 Z
2
0 ,

(4)

where k is any time lag before lag 0 (i.e., nonpositive inte-

gers) and t is the forecast lead time spanning from 0 to

30days. For example, values ofk5210 and t5 10 indicate

that we are usingMJO information from lag 0 to lag210 to

predict the teleconnection patterns 10 days after day 0.

Figure 1 demonstrates how often the logistic regres-

sionmodel with k5 0 (i.e., no pastMJO information as a

predictor) successfully predicts the sign of daily Z500 at

various lead times. Dotted regions indicate frequencies

that are significantly higher than that from a random

forecast (i.e., 50% chance of forecasting positive or

negative sign) at the 95% significance level based on a

binomial test. The events are divided into groups ac-

cording to MJO phase (rows) and the forecast lead time

(columns). Darker colors indicate higher success rates.

The regions of high success rate (i.e., phase 2, with 10–

14-day lead time, or phase 3, with 5–9-day lead time)

represent a PNA-like wave train extending from the

North Pacific to the Gulf of Alaska. Following phase 3,

the PNA-like signal initiates from the extratropical

Pacific and then strengthens over the Gulf of Alaska,

consistent with the propagation of the stationary Rossby

wave generated by MJO convection (Tseng et al. 2018).

Since the MJO is a circumnavigating system along the

equator, with two adjacent phases typically separated by

approximately 5 days, we might expect the predicted

Z500 in phase 2 at 10–14-day lead time (Fig. 2f) to be

similar to the predicted Z500 in phase 3 at 5–9-day lead

time (Fig. 2h). It is because of this that we observe

similar patterns along the diagonal directions of Fig. 1

(e.g., Figs. 1j, 1h, and 1f).

To investigate how increasing the MJO information

before lag 0 influences the MJO teleconnection predic-

tion skill, Fig. 2 (top panel) shows the loss from the lo-

gistic regression models over multiple values of k (i.e.,

k 5 0, 25, 210, 215, 220) at one particular grid point

(608N, 1508E; ‘‘3’’ in Fig. 1). The loss function is defined

in appendix A, which can be considered as an analog of

the root-mean-square error used in linear regression.

Blue shading indicates small loss, or better prediction

skill, while red shading indicates high loss, or worse

prediction skill. Dotted regions indicate that the cross-

entropy is significantly higher than that from a random

forecast. Specifically, we randomly sampledMJO events

from reanalysis based on the sample size in each MJO

phase and lead time. This group of data is considered

a ‘‘random forecast.’’ We calculate the cross-entropy

based on Eq. (A1) by using this random forecast. The

random sampling is then repeated 1000 times to ap-

proximate the distribution of cross-entropy values by

random forecasts. As long as the value shown in the

upper panel of Fig. 2 is significantly higher/lower at

the 95% confidence level than the random forecast, the

shading is marked with a black dot. Phase/lead times

with small loss extend along the diagonal direction of the

panels in the upper panel of Fig. 2, and these regions are

collocated with the lead times of high success rate in

Fig. 1. Looking closely at Fig. 2, one finds that the blue

shading darkens as more MJO information is added as

a predictor. This is more easily seen in lower panel of

Fig. 2, which shows the difference in loss function be-

tween the logistic regression model with extra MJO in-

formation before lag 0 (i.e., various values of k) and the
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model only withMJO information from lag 0 (i.e., k5 0).

The blue color in the lower panel of Fig. 2 indicates the

cross-entropy is reduced (or improved prediction skill)

with the additional MJO information. Dotted regions

indicate the difference in cross-entropy between the

two given models is significantly different from zero at

the 95% confidence level based on a t test. MJO in-

formation from lags 0–5 does not benefit the model

prediction skill very much, although the model loss is

reduced by 10%–15%when information from lags 0–15

are used (e.g., Fig. 2h).

One possible explanation for why lags 0–5 days offer

little additional skill is that these days provide similar

information to lag 0 since the MJO is a slow-varying

system. In the cases where we provide information be-

fore lag25 days (e.g., Figs. 2g,h,i), MJO activity at these

time lags can differ significantly from that at lag 0. In

this case, the logistic regression model has additional

and nonredundant information that increases prediction

skill. Of course, this increase in skill does not continue

without limit, and comparing Figs. 2h and 2i, MJO

teleconnection prediction skill barely improves when

extra information from lag 215 to lag 220 is included

as predictors. This implies that giving the model MJO

information from lag 0 to lag 215may maximize the

improvement of prediction skill, while the additional

information before lag 215 has little impact on predic-

tion.Wewill revisit this result with the LBM simulations

in section 4. Finally, the lower panel of Fig. 2 presents a

perhaps surprising result that not every MJO phase/lead

time is improved when additional pastMJO information

is added to the logistic regression model (e.g., MJO

phase 5, 10–15 days forecast lead time in Figs. 2g–i). The

mechanism responsible for this feature will be addressed

in section 5.

To verify that the results shown in Fig. 2 are not

unique to one grid point, Fig. 3 shows maps of the dif-

ference in loss between the model for k 5 220 and the

FIG. 1. Frequency (in percent) of correctly predicting the sign of daily Z500 anomalies by the logistic regressionmodel for k5 0. A blue

‘‘3’’ denotes the location shown in Figs. 2 and 3. Dotted regions indicate frequencies that are significantly higher than the random forecast

at 95% level based on binomial test. The degree of freedom depends on the sample size in each panel.
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model for k 5 0 (i.e., k 5 220 minus k 5 0). Blue

shading indicates that the model loss is smaller (skill is

improved) when the model includes more past MJO

information, while red shading indicates that the model

loss is increased (skill is degraded). Similar to the lower

panel of Fig. 2, a t test is applied to examine the statis-

tical significance of entropy differences between models

with k 5 220 and k 5 0. Dotted regions indicate the

difference is significantly different from 0 at the 95%

confidence level. Comparing Figs. 1 and 3, regions char-

acterized by reduced loss with additional past MJO in-

formation (blue shading in Fig. 3) are spatially collocated

with the regions that originally showed high prediction

skill (shading in Fig. 1).

We also examine the difference between the logistic

regression models’ loss with k 5 215 and k 5 220

(k5220minus k5215; shown in Fig. 4). As previously

discussed for a single grid point, MJO teleconnection

prediction skill does not greatly improve with inclusion

of MJO information before lag 215 over most of the

domain.

With regard to the possibility of model dependence,

we also include the analysis based on a linear regression

model in appendix B. Specifically, we only use Eq. (1)

and drop Eq. (2) for forecasting Z500. Since we now

forecast the magnitude of geopotential height instead of

the sign, the root-mean-square error is used to quantify

model performance. In general, the linear regression

model qualitatively shows similar results, where the

additional lags of theMJO benefits the forecast of future

Z500. However, similar to the logistic regression model,

the benefit of prior MJO information saturates around

k5215 and k5220 does not showmuch improvement

compared to k 5 215.

FIG. 2. (top) The average loss (cross-entropy) of the logistic regression model for (a) k5 0, (b) k525, (c) k5210, (d) k5215, and

(e) k 5 220 as written in Eq. (4) for the grid point 708N, 1508E (blue ‘‘3’’ in Fig. 1). (bottom) The difference in average loss between

logistic regression models for (f) k525 and k5 0, (g) k5210 and k5 0, (h) k5215 and k5 0, and (i) k5220 and k5 0 for the grid

point 708N, 1508E (blue ‘‘3’’ in Fig. 1). Dotted regions in the top panel indicate that the cross-entropy is significantly higher/lower than the

random forecast at the 95% confidence level based on a bootstrapping analysis. Details of the bootstrapping analysis are provided in the

main text. Dotted regions in the bottom panel indicate that the difference in cross-entropy betweenmodels is significantly different from 0

at the 95% significance level based on a t test.
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4. MJO teleconnections in an LBM

We provide additional physical insight into the results

from the logistic regression model using simulations

with an LBM. Specifically, we aim to quantify the im-

portance of past MJO information in determining the

evolution of the midlatitude geopotential height field.

The MJO forcing for each MJO phase is derived by

randomly selecting 20 MJO events from reanalysis data

according to the criteria given in section 2 (i.e., the OMI

amplitude at lag 0 is greater than 1s) and calculating the

phase-composited Q1 with respect to lag 0. Five simu-

lations are run for eachMJO phase, with each of the five

simulations forced with the compositeQ1 from the same

MJO events but initialized at different time lags in the

past (lag 5 0, 25, 210, 215, 220). Figure 5 shows an

example of this setup, where the shading represents the

equatorial-average (158S–158N) MJO phase 2 forcing for

the five simulations. The forcing patterns are identical

from one simulation to the other after lag 0 and the forcing

at lag 0 is characterized by the phase 2 heating pattern.

What differs between them is the amount of MJO infor-

mation before lag 0.With this simulation setup, we are able

to examine the importance of past MJO activity in driving

future midlatitude circulation anomalies. Finally, to in-

crease the robustness of our results, we repeat the five

simulations for each phase 24 times, giving us 24 ensemble

members per simulation per phase.

The ensemble average Z500 for simulations initialized

at lag 0 are shown in Fig. 6 as a function of MJO phase

and time after lag 0 (shading). We compare these anom-

alies with those from the simulation using informa-

tion up to lag 220 days (in Fig. 5e; contours in Fig. 6).

Figure 6 shows large Z500 anomalies concentrated in

specific MJO phases rather than along the diagonal di-

rections. As noted previously, the large signals along the

diagonal of the MJO phase/lead time plots (such as

Figs. 1 and 4) are associated with the propagation of

FIG. 3. The difference in average loss (root-mean-square error; unit5m) between logistic regressionmodels for k5220 and k5 0. The

blue regions indicate reduced cross-entropywith the increase ofMJO information (i.e., k5220minus k5 0). Dotted regions indicate that

the difference in cross-entropy between k5220 and k5 0 is significantly different from 0 at the 95% significance level based on a t test.
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MJO convection, where the teleconnections generated

by the earlier MJO phases can interfere with the tele-

connections generated by later phases. This feature

is clear for the simulation that includes the MJO

information from lag 0 to lag220 (contours in Fig. 6) but

is not evident in the simulations without MJO infor-

mation prior to lag 0 (shading in Fig. 6). Further in-

spection of Fig. 6 shows that differences between the

FIG. 4. The difference in average loss (cross-entropy) between logistic regression models for k 5 220 and k 5 215. The blue regions

indicate reduced cross-entropy with the increase of MJO information (i.e., k 5 220 minus k 5 215). Dotted regions indicate that the

difference in cross-entropy between k5220 and k5215 is significantly different from 0 at the 95% significance level based on a t test.

FIG. 5. The equatorial-average (158S–158N) MJO phase 2 column-integrated Q1 (unit 5 mmday21) forcing for initialization of the

linear baroclinicmodel. Each panel denotes the forcing for each of the five different simulations. All of the simulations have identicalMJO

phase 2 heating at lag 0 and later lags.
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shading and the contours are larger for earlier lead times

(e.g., first column of Fig. 6, such as Figs. 6g and 6j) and

smaller for later lead times (e.g., third column of Fig. 6,

such as Figs. 6f and 6i). This can be explained by the time

it takes for the MJO teleconnection to develop in the

extratropical regions. That is, the MJO teleconnections

in the early lead times (e.g., days 0–4) are mostly de-

termined by the MJO forcing before lag 0 while the

teleconnections in the later lead times (e.g., days 10–14)

are influenced by the MJO forcing after lag 0.

Figure 7 is identical to Fig. 6 except the shading is the

ensemble averaged Z500 anomalies from the simulation

for lag 0 to 215 (Fig. 5d). The similarity between the

shading and contours in Fig. 7 implies that the observed

teleconnections are mostly explained by the MJO forc-

ing from lag 0 to lag 215, while additional information

of the MJO before lag 215 has minimal impact on the

simulated teleconnection patterns. This result is true

whether one looks at the ensemble average, or each of

the 24 ensemble members separately (not shown).

These results support those from the logistic regres-

sion model and indicate that 15 days is the approximate

time span over which past MJO activity impacts the

future evolution of the midlatitude circulation. It is

worth mentioning that even though both the LBM and

logistic regression models exhibit the same general be-

havior, the exact meaning of the 15-day time span is

slightly different between these two models. We will

expand on this point in the next section.

5. Mechanistic explanation

We now address the physical mechanisms that deter-

mine the 15-day period over which past MJO activity

impacts the future evolution of the midlatitude cir-

culation, with particular emphasis placed on why past

FIG. 6. The ensemble averaged Z500 anomalies for LBM simulations initialized at lag 0 (shading) and initialized at lag 220 (contour).

Contours are drawn every 5m.
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information appears to be more important in some

phases compared to others (i.e., Fig. 3).

First, we briefly review the literature associated with

the dynamics of MJO teleconnections in order to better

interpret results from the logistic regression models.

According to the numerical tests by Seo and Lee (2017)

and Tseng et al. (2019), heating in the eastern Indian

Ocean and the western Pacific can generate similar

PNA-like teleconnection patterns but with opposite

sign. Thus, a PNA-like pattern is more likely to be ob-

served 10–14 days after the MJO phases characterized

by dipole heating about the Maritime Continent (e.g.,

phases 2, 3, 6, and 7) due to constructive interference of

the signals excited by the dipole heating in the two re-

gions. On the other hand, the teleconnection patterns in

other phases (e.g., phase 1, 4, 5, and 8) tend to vary more

from one event to the other because of the destructive

interference by the signals in these two regions. Based

on these studies, one may hypothesize that a robust

PNA-like signal can be found in the extratropical re-

gions if the MJO heating persists in phases 2 and 3

(or phase 6 and 7), because of the superimposition of

the same signals, while a less robust PNA-like pattern

can be found if the MJO heating persists in the other

phases. We will now explore how this mechanism may

influence the ‘‘15 additional lags’’ discussed in the pre-

vious sections.

Returning to the results from the logistic regression

model, we divide observed MJO events into two groups

based on the change in the loss function shown in Fig. 3c.

The first group represents the cases where the loss is

greatly reduced at 10 days forecast lead time when ad-

ditional MJO information (i.e., k 5 215) is included in

the model. Specifically, we choose the top one-third of

events most improved by the additional past MJO in-

formation. The second group represents the cases where

the loss showsminimal change at 10 days lead time when

the by the additional past MJO information. We choose

FIG. 7. The ensemble averaged Z500 anomalies for LBM simulations initialized at lag215 (shading) and initialized at lag220 (contour).

Contours are drawn every 5m.
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the top one-third events characterized by the least im-

provement inMJO teleconnection prediction skill. These

two groups represent the cases where the concept of 15

additional lags both works (group 1) and fails (group 2).

Figure 8 shows the probability density function of the

MJO phase over the 15 days prior to lag 0 for these two

groups. The x axis represents theMJO phase at lag 0 and

the y axis indicates theMJO phase from lag 0 to lag215.

Thus, integrating the shading along a constant x axis

results in a value of 100%. The diagonal line represents

persistent MJO forcing of the same phase over the

15 days. Shading is concentrated below this line for both

groups, consistent with eastward propagation of MJO

convection (where one phase is followed by the other).

For example, if the MJO phase at lag 0 is phase 2, one

may expect the MJO phases in the past 15 days to most

likely have been phases 1, 8, or 7 rather than phases

3 or 4.

The regions of maximum frequency (shading) in Fig. 8

imply a preference for particular past MJO phases. In

group 1, the maximum frequencies appear when the

MJO over the past 15 days is in phases 2, 3, 6, and 7. By

contrast, the maximum frequencies for group 2 exist

when theMJO over the past 15 days is in phases 4 and 8.

Based on our previous discussion, phases 2, 3, 6, and 7

are characterized by more consistent teleconnection

patterns, while phases 4 and 8 lack consistency. The lo-

gistic regression model is only capable of learning con-

sistent information within the training data, and so is

only capable of using past phase information when the

associated teleconnection patterns are consistent (i.e.,

group 1). The frequency maxima in Fig. 8a thus signify

the importance of past MJO phases (e.g., phases 2, 3, 6,

and 7) in determining the so-called 15 additional lags we

found for the logistic regression models. In contrast, the

frequency maxima in Fig. 8b signify that some specific

MJO phases (e.g., phases 4 and 8) do not provide addi-

tional information for prediction. This result is relevant

to different types of MJO convective events, including

those characterized by fast propagating or standing be-

havior. In Fig. 8b, there are at least two types of MJO

events that can be observed: 1) fast-propagating cases

and 2) standing cases. The fast-propagating cases can be

found whenMJO is phases 2, 3, 6, and 7 at lag 0 (e.g., the

cases experience more than four different MJO phases

over the past 15 days). On the other hand, the slow-

propagating or stationary events can be found when

MJO is phases 4, 5, and 8 at lag 0 (e.g., the cases expe-

rience fewer than four different phases over the past

15 days). Apparently, both types of MJO can lead to

only modest improvement of Z500 predictions. The only

feature shared by both types of events is that they both

went through the MJO phases generating less-robust

teleconnection signals over the past 15 days (e.g., phase

1, 4, 5, and 8). This indicates that the location of tropical

heating is the key factor that determines if the additional

lags are beneficial for prediction rather than the prop-

agating speed. In general, the conclusion is consistent

with Tseng et al. (2019). Tseng et al. (2019) examined

similar features in reanalysis based on daily Rossby

wave source anomaly in the extratropics, which initially

contains no MJO information. Thus, the phase depen-

dence of MJO-induced teleconnections can be regarded

as a special case of this mechanism.

FIG. 8. The frequency of occurrence of theMJO phase for the 15 days before lag 0 (i.e., up to lag215). The x axis

denotes the MJO phase at lag 0, and the y axis denotes the MJO phase over the past 15 days. The MJO events are

divided into two different groups as described in the text.
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Given this discussion, onemay be confused about why

the LBM does not exhibit a phase dependence in the

importance of past information (i.e., no phase is char-

acterized by degraded simulations in LBM when addi-

tional lags are used; see Figs. 6 and 7). That is, the LBM

results suggest that theMJO activity 15 additional lags in

the past is important for the evolution of the midlatitude

circulation nomatter the present phase of theMJO. The

reason for this is that the LBM is a deterministic model,

where the future state of extratropical circulations can

be considered as the linear superimposition of MJO

influence over different lags. Thus, as long as the LBM

is forced by Q1 from the same set of MJO events, the

identical response will be simulated regardless of the

current MJO phases. However, the logistic regression

model based on observations is subject to the predict-

ability of the Earth system, so only consistent relation-

ships can be learned by the logistic regressionmodel, such

as the teleconnections generated by MJO phases 2, 3, 6,

and 7. This difference explains why the phase/lead time

dependence of our results only appears for the logistic

regression model rather than the LBM.

6. Conclusions

The impact of past MJO activity on the future state of

the extratropical circulation is examined, with particular

emphasis placed on quantifying how many days of past

information is useful to aid prediction. Using both a

logistic regression model and a linear baroclinic model

to predict the evolution of midlatitude geopotential

height anomalies, we demonstrate that approximately

15 days of prior MJO information importantly impacts

the future evolution of the midlatitude circulation. For

the logistic regression model, the prediction of MJO

teleconnections is improved by including past MJO

information, although this improvement is only found

for specific phase/lead combinations. We find that only

the MJO phases that generate consistent teleconnec-

tion patterns (i.e., phases 2, 3, 6, and 7) exhibit the

usefulness of these 15 additional lags. This is because

the logistic regression model based only on two OMI

indices can only learn consistent relationships in the

training data.

Our results are based on results from a simple logistic

regression model, and it is unclear whether the phase

dependence of the results will hold for neural networks

with more complex architectures. In addition, low-

frequency climate variability (e.g., ENSO and the quasi-

biennial oscillation) is known tomodulate the consistency

of MJO teleconnections, and thus will likely change the

specific phases/lead times for which past MJO informa-

tion is useful for empirical prediction of the midlatitude

circulation. How interannual variability influences how

much information on past MJO activity is useful for

prediction is an area of research. Regardless, our results

suggest that midlatitude empirical prediction schemes

based on the MJO may be improved by including infor-

mation about the past evolution of the MJO.
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APPENDIX A

Details about the Logistic Regression Model

To evaluate the performance of logistic regression

model, the cross-entropy function is used as the loss

function in this study [Eq. (A1)].

J
t
5

1

m
�
m

i51

f2ytruei,t 3 log[sign(Z500)predicti,t ]

2 (12 ytruei,t )3 log[12 sign(Z500)predicti,t ]g : (A1)

Here Jt is the ‘‘loss’’ of the logistic regression model,

ytruet denotes the actual (true) value of sign(Z500)predicti,t ,

and the summation shows that Jt is derived as an aver-

age overm events. Smaller values of Jt indicate a better

model (i.e., a model with lower loss and higher predic-

tion skill). The advantage of using cross-entropy is that

the loss (i.e., Jt) grows exponentially if the model in-

correctly predicts the logistic value, providing a larger

penalty than the root-mean-square error.

Regularization is a technique used to prevent a trained

model from overfitting, which ultimately reduces the er-

ror for unseen (out of sample) data. Regularization most

often involves adding an additional term to the loss

function, as shown below:

J
t
5

1

m
�
m

i51

f2ytruei,t 3 log[sign(Z500)predicti,t ]2 (12 ytruei,t )3 log[12 sign(Z500)predicti,t ]g1 l

2m
(w2

OMI10
1w2

OMI20
): (A2)
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Equation (A2) is nearly identical to Eq. (A1) except that

it includes an additional term, the regularization term.

Note that l is a positive value (to be explained later in

the appendix), and wOMI10,t and wOMI20,t are the regres-

sion coefficients shown in Eq. (1). The regularization

term is always positive or zero, with larger values of

wOMI10,t andwOMI20,t leading to a larger loss Jt. Thus, this

regularization term ensures that the coefficients remain

small, reducing the chance of overfitting. However, a

model with too large a regularization term will force the

regression coefficients to near-zero, resulting in a poor

predictive model.

We use ‘‘gradient descent’’ to optimize our model to

identify the best coefficients for prediction, and the proper

amplitude of regularization (i.e., l). Although gradient

descent is the common method for training neural net-

works, we include its formulation here for completeness.

Specifically, the regression coefficients and bias unit are

updated during the training process as follows:

w
(j11)
OMI10,t

5w
(j)
OMI10,t

2h
›J

t

›w
(j)
OMI10,t

w
(j11)
OMI20,t

5w
(j)
OMI20,t

2h
›J

t

›w
(j)
OMI20,t

b(j11)
t 5 b(j)t 2h

›J
t

›b
(j)
t

(A3)

The superscript j 1 1 indicates the (j 1 1)th step of the

training, or updating of the coefficients. The most right-

hand terms are the gradients of the loss function with

respect to the coefficients and bias. The minus signs

represent the downgradient direction, specifying that

the coefficients should be updated in the direction to

reduce the loss. Also, h is the learning rate parameter,

which indicates the amount to adjust the coefficients

with each iteration.

The gradients of the loss function can be analytically

derived by plugging Eq. (A2) into Eq. (A3):
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(A4)

Using Eq. (A4), one can iteratively train the logistic

regression model to optimize the regression coeffi-

cients and the bias term. We train over our training set

40 times (40 epochs), and additionally perform 20 cross-

validation cycles (i.e., resample our data 20 times) for

the training and testing sets. Each training set contains

2/3 of the total data and the rest is used as the testing

set. The final loss for a given model is defined as the

average loss for the testing datasets over all 20 cross-

validations.

As noted previously, when we increase the number

of input variables, the logistic regression model is

more likely to get into the condition of overfitting.

Thus, a regularization term is used in this study. Here,

we use logistic regression models with k 5 220 and

t spanning from 0 to 30 in Eq. (4) to demonstrate how

FIG. A1. The average loss (cross-entropy) of the logistic re-

gressionmodel for k5220 averaged over lags 0–30 for 20 different

training/testing sets as a function of the regularization term. This

example is for the model at the grid point 608N, 1508E. Error bars
denote plus/minus one standard deviation across the 20 training/

testing sets.
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the amplitude of regularization influences models’

prediction skill.

The choice of the regularization term l must be cho-

sen before the final training of the model. Figure A1

shows the loss (cross-entropy) of the logistic regression

model for k 5 220 averaged over lags 0–30 for 20

different epochs as a function of the regularization

term for one particular grid point. Error bars denote

plus/minus one standard deviation of the cross-entropy

across the 20 testing sets. Figure A1 shows that the

average loss has a local minimum when [1 2 h(l/m)] 5
0.75 (or h(l/m) 5 0.25) and higher loss function on

both ends. This behavior is consistent with the previ-

ous discussion that too large or too small of a regula-

rization term can degrade the performance of the

predictive model. Thus, we choose the regulariza-

tion term that leads to the minimum loss, namely

[12 h(l/m)]5 0.75. The l selection in other extratropical

regions and the other k term are based on the same

analysis given above.

APPENDIX B

Analysis Based on a Linear Regression Model

In this appendix, we show results utilizing a linear

regression model. Specifically, only Eq. (1) is used for

forecasting the daily Z500 while Eq. (2) is dropped. In

addition, the model forecast skill is defined by the root-

mean-square error [Eq. (B1)]:

J
t
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
�
m

i51

(h
i,t
2 ytruei,t )

2

s
: (B1)

The notation in Eq. (B1) is identical to that in appendix A.

Results from the linear regression model are shown in

FIG. B1. As in Fig. 2, but using a linear regression model. Shading in the top panel shows the averaged root-mean-square error (unit5m).

Dotted regions indicate that the root-mean-square error is significantly higher/lower than the random forecast at the 95% confidence

level based on bootstrapping analysis. Shading in the bottom panel shows the difference in root-mean-square error between two given

linear regressionmodels (e.g., k5220minus k5 0). The dotted regions indicate the values are significantly different from 0 based on a

t test.
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Figs. B1 and B2 . Similar to Fig. 2, the upper panel of

Fig. B1 shows the loss (root-mean-square error) from

the linear regression models over multiple values of k

(i.e., k55 0,25,210,215,220) at one particular grid

point (608N, 1508E; ‘‘3’’ in Fig. 1). A similar boot-

strapping analysis is performed for Fig. B1 to examine

the statistical significance, except the distribution of the

loss function is based on root-mean-square error. Dotted

regions indicate that the cross-entropy is significantly

higher/lower than the random forecast at the 95% confi-

dence level. The bottom panel of Fig. B1 shows the dif-

ference in root-mean-square error between two given

models (e.g., k 5 220 minus k 5 0). The dotted regions

indicate that the values are significantly different from 0

based on a t test. In general, the results in Fig. B1 are

consistent with Fig. 2, where the additional lags of MJO

information benefit the prediction of Z500. However,

similar to Fig. 2, the additional skill brought by past MJO

information saturates around k 5 215, while additional

information does not show an influence on Z500 predic-

tion skill.

Figure B2 shows maps of differences in the loss func-

tion between k 5 220 and k 5 0 (i.e., k 5 220 minus

k 5 0). Similar to Fig. 3, the blue shading indicates the

prediction skill is improved (reduced root-mean-square

error) when additional lags are used. In Fig. B2, the re-

gions characterized by improved skill are spatially collo-

cated with the regions shown in Fig. 3. We also show the

difference in loss function between k5220 and k5215

(i.e., k5220minus k5 –15) in Fig. B3. Similar to Fig. 4,

most of regions are characterized by insignificant change

in the loss function. From Figs. B1 and B3, one can find

the linear regression model qualitatively shows the same

result as the logistic regression model.

FIG. B2. As in Fig. 3, but using a linear regressionmodel. The blue regions indicate reduced root-mean-square error with the increase of

MJO information (i.e., k5220minus k5 0). Dotted regions indicate the difference in root-mean-square error between k5220 and k5 0 is

significantly different from 0 at the 95% significant level based on a t test.
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